Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament
نویسندگان
چکیده
Human RAD51 is a key protein in the repair of DNA by homologous recombination. Its assembly onto DNA, which induces changes in DNA structure, results in the formation of a nucleoprotein filament that forms the basis of strand exchange. Here, we determine the structural and mechanical properties of RAD51-dsDNA filaments. Our measurements use two recently developed magnetic tweezers assays, freely orbiting magnetic tweezers and magnetic torque tweezers, designed to measure the twist and torque of individual molecules. By directly monitoring changes in DNA twist on RAD51 binding, we determine the unwinding angle per RAD51 monomer to be 45°, in quantitative agreement with that of its bacterial homolog, RecA. Measurements of the torque that is built up when RAD51-dsDNA filaments are twisted show that under conditions that suppress ATP hydrolysis the torsional persistence length of the RAD51-dsDNA filament exceeds that of its RecA counterpart by a factor of three. Examination of the filament's torsional stiffness for different combinations of divalent ions and nucleotide cofactors reveals that the Ca(2+) ion, apart from suppressing ATPase activity, plays a key role in increasing the torsional stiffness of the filament. These quantitative measurements of RAD51-imposed DNA distortions and accumulated mechanical stress suggest a finely tuned interplay between chemical and mechanical interactions within the RAD51 nucleoprotein filament.
منابع مشابه
Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament.
Rad51 and Rad54 proteins are important for the repair of double-stranded DNA (dsDNA) breaks by homologous recombination in eukaryotes. Rad51 assembles on single-stranded DNA (ssDNA) to form a helical nucleoprotein filament that performs homologous pairing with dsDNA; Rad54 stimulates this pairing substantially. Here, we demonstrate that Rad54 acts in concert with the mature Rad51-ssDNA filament...
متن کاملDissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers.
Nucleoprotein filament formation by recombinases is central to homologous recombination. To follow this process, we used fluorescent human Rad51 recombinase to visualize the interactions with double-stranded DNA (dsDNA). Fluorescence imaging revealed that Rad51 filament formation on dsDNA initiates from multiple nucleation points, resulting in Rad51-dsDNA nucleoprotein filaments interspersed wi...
متن کاملThree New Structures of Left-Handed RadA Helical Filaments: Structural Flexibility of N-Terminal Domain Is Critical for Recombinase Activity
RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet un...
متن کاملDirect imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules.
Rad51 protein (Rad51) is central to recombinational repair of double-strand DNA breaks. It polymerizes onto DNA and promotes strand exchange between homologous chromosomes. We visualized the real-time assembly and disassembly of human Rad51 nucleoprotein filaments on double-stranded DNA by single-molecule fluorescence microscopy. Rad51 assembly extends the DNA by approximately 65%. Nucleoprotei...
متن کاملReal-time assembly and disassembly of human RAD51 filaments on individual DNA molecules
The human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disass...
متن کامل